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This paper recognizes that soil layering may
have a profound effect on the settlement of pile
groups and that pile-to-pile interaction induces
not only additional settlement at the head of
each pile but also additional stresses along its
shaft. A general analytical formulation is devel-
oped, based on the Winkler model of soil
reaction, for determining the vertical interaction
factors between two piles embedded in multi-
layered soil. It is shown that such interaction
factors depend not only on the displacement
®eld arising from the settlement of a loaded
(`source') pile but also on the interplay between
the adjacent (`receiver') pile and the soil
subjected to this displacement ®eld. Such inter-
play, which has not been considered (at least
explicitly) in currently available simple methods,
is quanti®ed here through an analytically
determined factor æ, which lies between 0 and
1. The paper also develops closed-form expres-
sions for pile stiffness and interaction factors in
a two-layer stratum, and highlights crucial
aspects of the problem.

KEYWORDS: numerical modelling and analysis;
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L'article reconnaõÃt que la strati®cation du sol
peut avoir de profonds effets sur le tassement
des groupes de pieux et que l'interaction entre
les pieux produit non seulement un tassement
suppleÂmentaire aÁ la teÃte de chaque pieu, mais
aussi des contraintes suppleÂmentaires le long de
son fuÃt. Les auteurs ont mis au point une
formule analytique geÂneÂrale baseÂe sur le modeÁle
de reÂaction du sol de Winkler pour deÂterminer
les facteurs d'interaction verticale entre deux
pieux enfonceÂs dans un sol aÁ couches multiples.
Ils montrent que ces facteurs deÂpendent non
seulement du champ de deÂplacement engendreÂ
par le tassement d'un pieu chargeÂ («source»),
mais aussi de l'interaction entre le pieu adjacent
(«reÂcepteur») et le sol soumis aÁ ce champ de
deÂplacement. Cette interaction, dont ne tiennent
pas compte (du moins explicitement) les meÂth-
odes simples actuellement disponibles, est quan-
ti®eÂe ici aÁ l'aide d'un coef®cient î eÂtabli par
analyse, qui se situe entre 0 et 1. L'article
preÂsente eÂgalement des expressions de forme
fermeÂe pour la rigiditeÂ des pieux et les coef®-
cients d'interaction dans un sol aÁ deux couches,
et fait ressortir les principaux aspects du
probleÁme.

INTRODUCTION

A number of rigorous numerical techniques such
as the boundary-element-type methods (Poulos,
1968; Butter®eld & Banerjee, 1971; Banerjee &
Davies, 1978) and the ®nite element method
(Ottaviani, 1975) have been used for pile settle-
ment analysis. However, a number of approximate
solutions, based on sound principles of mechanics
(Cooke, 1974; Randolph & Wroth, 1978, 1979;
Baguelin & Frank, 1979; Scott, 1981; Nogami &
Chen, 1984; Chow, 1986; Fleming et al., 1992),
have provided valuable insight and offered versatile
design methods. A comprehensive review of the

subject was presented in the Rankine lecture by
Poulos (1989).

The simpli®ed (yet rational) concept of inter-
action factors was introduced by Poulos in 1968,
who showed that pile group effects can be assessed
by superimposing the effects of only two piles at a
time. Numerous subsequent studies have shown
that pile-to-pile interaction (PPI) (a) leads to a
decrease in the group stiffness, (b) distributes non-
uniformly the cap load with the corner piles
`attracting' more load than the central piles, and
(c) alters the load-transfer mechanism by produ-
cing additional shear stresses along the pile shaft
and increasing the load transmitted to the base.
However, despite the fact that the latter effect has
been clearly pointed out in some studies (Poulos,
1968; Ghosh, 1975; Ottaviani, 1975), there is cur-
rently almost no information on its importance,
and certainly no simple method available to com-
pute it.
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The scope of this paper is twofold: (a) to
develop a simple and effective procedure for calcu-
lating multilayer interaction factors and to apply it
in pile-group settlement analysis, and (b) to inves-
tigate quantitatively the effect of pile-to-pile inter-
action on the mechanism of transferring cap load
to the soil mass through the piles.

PROBLEM DEFINITION

The general system studied in this paper consists
of a group of m vertical compressible piles em-
bedded in a layered soil deposit (Fig. 1(a)). The
system is subjected to a vertical static load PG

transmitted through a rigid pile cap which has no
contact with the soil. Each soil layer is modelled
as a linear elastic material of Young's modulus Es

and Poisson's ratio ís. Although the method is also
applicable to groups containing piles of different
sizes and properties, in this paper all piles are
considered to be identical solid cylinders of length
L, diameter d, cross-sectional area Ap and Young's
modulus Ep. The (usually stiffer) soil below the
pile tip extends either to in®nity (half-space) or
terminates at bedrock, located at a depth hb from
the pile tip. The pile spacing is denoted by s and
the thickness of the ith soil layer by hi. No
slippage is allowed to occur at the pile±soil inter-
face. The sign convention in this paper is illus-
trated in Fig. 1(b).

This system is analysed in three consecutive
steps: (1) behaviour of a single pile, (2) pile-to-pile
interaction and (3) settlement and internal forces of
the grouped piles.

THE SINGLE PILE

From the simple method of Randolph & Wroth
(1978) it follows that the soil around a pile shaft
can be represented by distributed springs (Winkler
assumption), the stiffness of which (per unit length
of pile) can be written as

kz � äGs (1a)

where

ä � 2ð

ln
2rm

d

� � (1b)

and rm is a `magical' (in the words of Randolph &
Wroth) radius, beyond which soil settlement is
vanishingly small. In the general case of an inho-
mogeneous soil, rm is given by

rm � ÷1÷2 L(1ÿ ís) (2)

in which ÷1 and ÷2 are empirical factors account-
ing for soil inhomogeneity; their numerical values
are discussed later in this paper.

Pile base
Adopting the arguments of Randolph & Wroth

(1978) and Scott (1981), it is suf®cient to assume
that the pile base (`tip') acts as rigid circular disc
on the surface of a homogeneous elastic stratum.
The corresponding force±displacement relationship
can be written as follows:

Kb � Pb

Wb

� dEb

1ÿ í2
b

1� 0:65
d

hb

� �
(3)
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Fig. 1. (a) Problem studied in this paper; (b) sign convention
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The factor in parentheses on the right-hand side of
equation (3) accounts for the presence of a rigid
bedrock at depth equal to hb below the pile tip
(Kausel, 1974; Gazetas, 1983); evidently, with no
bedrock present, hb !1 and this term reduces to
unity.

In the case of a pile in a homogenous layer, the
solution of the governing equilibrium equation
yields the vertical stiffness K atop the pile:

K � Ep Apë
Ù� tanh (hë)

1�Ù tanh (hë)
(4a)

in which Ù and ë stand for the dimensionless pile-
base stiffness and load transfer (Winkler) parameter
respectively:

Ù � Kb

Ep Apë
(4b)

ë �
s

äGs

Ep Ap

 !
(4c)

(In single-layer soils, the pile length L is equal to
the layer thickness h. In this case we use h instead
of L.)

Equation (4a) is portrayed parametrically in Fig.
2 in terms of the dimensionless pile length hë. The
pile stiffness is normalized by the stiffness of an
in®nitely long pile, Ep Apë, and is plotted for ®ve

different stiffness values Ù. Several interesting
trends are worthy of note in this ®gure.

(a) For the limiting case of Ù � 0 (no soil
reaction at the pile tip), the stiffness of a fully
¯oating pile grows linearly with hë up to a
value of hë � 0:50. This implies that within
the range 0 , hë, 0:50, a fully ¯oating pile is
essentially rigid. For hë. 0:50, the pile grad-
ually becomes more compressible and pile
stiffness increases at a slower rate, reaching
90% of the stiffness of the in®nitely long pile
at hë � 1:50. This value de®nes an active
length beyond which pile stiffness does not
increase with pile length. Substituting
hë � 1:50 into equation (4c) leads to

(L=d)active � 1:75(Ep=Es)
1=2 (5)

This expression is similar to the one reported
by Poulos (1989), and for Ep=Es � 1000 gives
an active length at the order of 60 pile
diametersÐwell above most pile lengths used
in practice. Therefore, contrary to laterally
loaded piles, for which the active length is
usually of the order of 10 diameters, in axially
loaded piles active length is too large to be of
practical signi®cance.

(b) Similar trends are observed for ¯oating piles
with Ù � 0:10 and 0´20. Speci®cally, the
normalized pile stiffness (i) tends to become
equal to Ù as the pile length tends to zero (i.e.
the stiffness of a zero-length pile is equal to
the stiffness of the soil `spring' at the pile tip),
(ii) increases almost linearly with hë up to
hë � 0:50, and (iii) reaches its limiting
(asymptotic) value at hë about 1´75, regardless
of Ù.

(c) A different behaviour characterizes end-bear-
ing piles. Their stiffness is a monotonically
decreasing function of pile length. It is easy to
prove from equation (4a) that the product of
the stiffness of an end-bearing pile (Ù � 1)
and the stiffness of a fully ¯oating pile
(Ù � 0) of the same length is equal to the
square of the stiffness of the in®nitely long
pile. This remarkable property is apparent in
Fig. 2, showing that the curve Ù � 1 is the
geometric mean of the curves for Ù � 1 and
Ù � 0.

For a pile embedded in a two-layer soil, a
closed-form expression is obtained for the stiffness
of the pile (see derivation in Appendix 1):

K � Ep Apë1

ë1 tanh (h1ë1)� ë1Ù tanh (h1ë1) tanh (h2ë2)

� ë2Ù� ë2 tanh (h2ë2)

ë1 � ë1Ù tanh (h2ë2)� ë2Ù tanh (h1ë1) �
ë2 tanh (h1ë1) tanh (h2ë2)

(6)
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Fig. 2. Normalized stiffness of a compressible pile
embedded in single-layer soil, for different values of
the dimensionless base stiffness Ù
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The reader can easily verify that by setting h1 � 0,
equation (6) reduces to the single-layer equation
(4a).

The numerical values of ÷1 and ÷2 are discussed
by Randolph & Wroth (1978). They recommend
÷1 � 2:5 for piles in a half-space and ÷1 � 2:0 for
soil on rigid bedrock at depth 2´5L. Also, for a
homogeneous half-space ÷2 is about 1´0, whereas
for `Gibson'-type soil ÷2 is about 0´5. Clearly,
judgement is necessary to interpolate the above
empirical values for an intermediate' multilayer
soil. Fortunately, however, the single-pile stiffness
is insensitive to the `exact' value of magical radius
rm. As an example, we consider a pile of slender-
ness ratio L=d � 30 embedded in multilayer soil
having an average Poisson's ratio ís � 0:3. For a
particular soil layer, the Winkler parameter ë is
calculated assuming that

(a) ÷1÷2 � 2:5 (i.e. homogeneous half-space con-
ditions)

(b) ÷1÷2 � 1:0 (i.e. Gibson soil on bedrock condi-
tions).

Despite the huge discrepancy in magical radius (by
a factor of 2´5), the two choices yield very similar
Winkler parameters:

ë(a)

ë(b)
�
r

ln [2 3 1:0 3 30(1ÿ 0:3)]

ln [2 3 2:5 3 30(1ÿ 0:3)]

� �
� 0:90

(7)

Moreover, recalling that, for ¯oating piles, the
stiffness increases with ë by a less-than-linear rate
(see Fig. 2), the resulting difference in pile stiff-
ness is even smaller (less than 6%)Ða negligible
difference compared with the many uncertainties
in real-life problems. Therefore, for single piles,
reasonable estimates of settlement can be achieved
by selecting ÷1 and ÷2 equal to either the homo-
geneous half-space values, 2´5 and 1´0, or the
Gibson soil on rock values, 2´0 and 0´50. Addi-
tional discussion on ÷1 and ÷2 is given in the
sequel.

Further justi®cation of the validity of the above
argument comes from Fig. 3, where the predictions
of equation (6), using the `homogeneous half-
space' values ÷1 � 2:5 and ÷2 � 1:0, are contrasted
with the results of Poulos & Davis (1980) and
Valliappan et al. (1974), for an incompressible pile
of length L embedded in a two-layer soil deposit
(the thickness of the top layer is h1 , L, the
bottom layer is a half-space and the Young's mod-
uli Es1 and Es2 have a ratio ranging from 0´2 to
5). The comparison between the expression devel-
oped here and Poulos' approximate numerical solu-
tion is very good for the whole range of h1=L
values. The same good comparison is noted against
the ®nite element results of Valliappan et al.
(1974).

INTERACTION BETWEEN TWO PILES

To determine the interaction factor between two
piles, one may start by calculating the displace-
ment ®eld around a single loaded (`source') pile.
The plane-strain approximation yields a logarithmic
variation of vertical soil displacement Us with
radial distance s from the pile and thereby to an
attenuation function expressed as

ø(s) � Us(s, z)

Us(d=2, z)

�
ln (rm)ÿ ln (s)

ln (2rm)ÿ ln (d)

d

2
, s , rm

0 s > rm

8><>:
(8)

Naturally, this plane-strain function ø(s) is inde-
pendent of the depth z.

Assuming that (i) the pile is stiff compared with
the surrounding soil (i.e. the gradient of pile settle-
ment with depth is relatively small) and (ii) a
second, unloaded pile (hereafter called the `recei-
ver' pile) located at a distance s from the `source'
pile follows exactly the free-®eld soil displacement
described in equation (8), the interaction factor
would be (approximately) equal to ø(s). This is

Poulos & Davis (1980)
Present solution: equation (6)
FEM, Valliappan et al. (1974)
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Fig. 3. Comparison of the closed-form expression
developed here (equation (6)) for the pile stiffness in
a two-layer soil with results from numerical solutions
(÷1 � 2:5, ÷2 � 1)
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essentially what Randolph & Wroth (1979) as-
sumed for calculating pile shaft-to-shaft inter-
action.

A new model for pile-to-pile interaction
In reality, however, piles do not follow exactly

the free-®eld displacement generated by their
neighbours. Axial pile rigidity and the soil reaction
at the pile tip tend to reduce the settlement from
the value computed on the basis of equation (8)Ð
hence the need for a more re®ned model, espe-
cially for piles in multilayered soil.

To this end, we propose a method involving
three consecutive steps, illustrated in Fig. 4.

Step 1. The `source' pile is subjected to a
vertical load at its head. Applying the method
given in Appendix 1 (or any other analytical
approach), the settlement pro®le W11(z) along the
pile is determined.

Step 2. For a soil pro®le consisting of distinct,
homogeneous horizontal layers it is assumed that
the attenuation of soil settlement with radial
distance from the pile still obeys (even if only
approximately) the logarithmic variation of equation
(8), within each layer. Therefore, at the location of
the unloaded `receiver' pile, if this pile were not
present, the soil displacement would be

Us(s, z) � W11(z)ø(s) (9)

Step 3. The presence of the `receiver' pile
modi®es (usually reduces) the above displacement.
To account in a simple yet realistic way for the
interplay between receiver pile and soil, the receiver
pile is modelled as a beam supported with Winkler
springs. Loading originates as a support movement,
equal to the attenuated vertical displacement ®eld
Us(s, z) of Step 2. (An analogous model was used
by Makris & Gazetas (1992) to study the lateral
dynamic interaction of piles.) The mechanics of this
loading is in a sense the reverse of that of Step 1, in
which the source pile induces displacements in the
soil; in Step 3, the soil induces the (attenuated)
displacements on the source pile. The response of
the receiver pile, W21(z), to such indirect loading
leads to the interaction factor, de®ned as

á � W21(z � 0)

W11(z � 0)
(10)

For this last Step 3, the analysis begins with
setting up the governing differential equation for
each soil layer. With the spring reaction being
proportional to the relative displacement W21(z)ÿ
Us(z), vertical equilibrium of an element of the
receiver pile is written as

Ep Ap

d2W21(z)

dz2
ÿ kz[W21(z)ÿ Us(s, z)] � 0

(11a)

where Us has been obtained, for each soil layer,
from Steps 1 and 2:

Loaded source pile

W11(0)
W21(0)

α 5 W21(0)/W11(0)

Kb

kz

s

Pile
distance

Unloaded receiver pile

Step 1: source pile
vertical displacement

Step 2: support excitation
of receiver pile 5

attenuated displacement
ψ(s)W11(z)

Step 3: receiver pile
response W21(z) to

support excitation ψ(s)W11(z)

Fig. 4. Schematic illustration of the proposed model for computing the
in¯uence of a head-loaded `source' pile on the adjacent (unloaded) `receiver'
pile, in a layered soil
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Us(s, z) � ø(s)W11(z) � ø(s)(A11 eëz � B11 eÿëz)

(11b)

A11 and B11 are integration constants determined
from the boundary conditions of the source pile.
The solution to equation (11a) is

W21(z) � ë

2
ø(s)z[ÿA11 eëz � B11 eÿëz]

� A21 eëz � B21 eÿëz (12)

(It is of interest that the two exponentials in the
forcing term of equation (11) coincide with the
homogeneous solution of that equation. As a result,
the independent variable z has to be included in
the particular integral to ensure the independence
between the homogeneous and particular solutions
(see Sokolnikoff & Redheffer, 1966).) A21 and B21

are new integration constants to be determined
from the boundary conditions of the receiver pile
(i.e. zero force atop the pile, continuity of forces
and displacements at each layer interface and at
the tip). The general formulation for n soil layers
involves matrix algebra which is quite standard.
Elements of such an analysis are given in the
sequel. More details can be found in the doctoral
thesis of Mylonakis (1995).

As an example, in the particular case of a pile
in a single-layer soil, equation (12) yields an
explicit expression for the interaction factor a, as a
product of two functions:

a � ø(s)æ(hë, Ù) (13a)

where the function æ � æ(hë, Ù) is given by

æ �
2hë� sinh (2hë)�Ù2[sinh (2hë)ÿ 2hë] �

2Ù[cosh (2hë)ÿ 1]

2 sinh (2hë)� 2Ù2 sinh (2hë)� 4Ù cosh (2hë)

(13b)

Of these two functions, ø denotes the induced
free-®eld displacement, while æ represents the ef-
fect of the rigidity of the pile and the interaction
between the pile and surrounding soil. Recall that
Randolph & Wroth (1979) assumed that the shaft
of the receiver pile follows exactly the induced
free-®eld soil settlement generated at mid-depth of
the source pile (i.e. they neglected Step 3 and
assumed æ � 1). Chow (1986) divided the pro®le
into discrete horizontal soil layers (in a similar
manner as was done here) but he also implicitly
assumed, as did Randolph & Wroth, that within a
soil layer, the settlement of a pile segment j due to
pile segment i is given by the free-®eld equation
(8). As a result, for homogeneous soil, his solution
is essentially the same as that of Randolph &
Wroth (1979).

It is instructive to examine the asymptotic be-
haviour of the function æ � æ(hë, Ù) (equation

(13b)). For end-bearing piles, the base-stiffness
parameter Ù becomes in®nite and æ simpli®es to

æ � 1
2

1ÿ 2hë

sinh (2hë)

� �
(14)

whereas for base-unsupported, fully-¯oating piles,
the base parameter Ù vanishes and

æ � 1
2

1� 2hë

sinh (2hë)

� �
(15)

For a very long pile, as h approaches in®nity, all
the above equations converge to

æ � 1
2

(16)

This remarkable outcome implies that with very
long piles, the interaction factor is only one-half of
the `free-®eld' value at the location of the receiver
pile. Also, notice that equation (16) is equal to
one-half of the sum of equations (14) and (15) (i.e.
the interaction factor of a fully ¯oating pile is
symmetric to that of the end-bearing pile with
respect to the in®nitely long pile); further discus-
sion is given in the sequel.

Interaction between pile bases
The analysis presented so far considers only the

interaction between pile shafts. However, a displa-
cement ®eld is also generated below a pile base.
As a result, interaction will also develop between
pile bases. Its importance is examined here.

Following the assumption that the pile base acts
as a punch on the surface of a half-space, the
attenuation of soil settlement at a radial distance s
from the pile is given by

øb(s) � Us(s, L)

Us(d=2, L)
� d

ðs
(17)

This approximation has been found by Randolph &
Wroth (1979) to be in accord with the `exact'
settlement pro®le around a rigid punch on a half-
space, for s . d.

Interaction between pile bases can be included
in the proposed method by simply assuming that
the attenuated settlement øb(s)Wb generated from
the load Pb at the base of the source pile drags
downwards the base of the spring at the tip of the
receiver pile.� Enforcing this new boundary condi-
tion, a complementary interaction factor ab is
calculated, accounting for pile base-to-base inter-

� The spring at the pile tip is a stiffness element having,
of course, no dimensions (i.e. length) and therefore base-
to-base interaction, as treated in this paper, occurs at the
same elevation.
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action. As an example, in the case of a homoge-
neous single-layer soil, ab can again be expressed
explicitly as the product of two functions:

ab � øb(s)æb(hë, Ù) (18a)

where the function æb � æb(hë, Ù) is given expli-
citly as (Mylonakis, 1995)

æb � 2Ù

2Ù cosh (2hë)� sinh (2hë)(Ù2 � 1)
(18b)

Using the arguments of Randolph & Wroth (1978),
the overall interaction factor is approximately equal
to the sum of the shaft-to-shaft component a and
the base-to-base component ab.

The major difference between shaft and base
attenuation functions is that øb(s) decreases in
inverse proportion to the radial distance s, while
ø(s) decreases at a much slower (logarithmic or
square-root) rate. Therefore, base displacement af-
fects a substantially smaller region around a pile
than shaft displacement. (For example, for
s=d � 2, øb is equal to only 0´13Ðabout 4 times
smaller than ø; for s=d � 4, øb is equal to 0´08 or
about 5 times smaller than ø.) Moreover, soil±base
interaction further reduces ab. To illustrate this,
Fig. 5 plots æb versus hë and Ù. It is seen that æ
decreases very fast with pile length, remaining
below 0´20 for most cases of practical interest.
Evidently, ab (the product of two small numbers)
would be much smaller than unity (usually of the

order of 10ÿ3). Therefore, pile base-to-base inter-
action is negligible and will not be further ad-
dressed in this paper.

Returning to (the dominant) shaft-to-shaft inter-
action, the function æ � á=ø(s) (equation (13b)) is
plotted in Fig. 6 as a function of the dimensionless
pile length hë. Expressing solely pile±soil inter-
action, æ is always less than 1. For zero pile length,
æ vanishes since a source pile of zero length
cannot produce any appreciable `action' (i.e. dis-
placement ®eld) to affect its neighbours (inter-
action between pile bases has already been
neglected). The only exception to this is the zero-
length fully ¯oating pile; having zero stiffness, it
follows exactly the (vanishingly small) action by
the source pile, leading to æ � 1.

For values of Ù between 0 and 1, several trends
are noted: initially, for short piles, æ increases
rapidly with pile length hë, reaching a peak at hë
of the order of 0´50; thereafter, for long piles, æ
turns to a decreasing function of hë approaching
asymptotically the value of 0´50. Notice that the
peaks occur at a value of hë which increases with
Ù. A qualitative explanation of these trends is
offered below.

The initial increasing trend is a result of the
essentially rigid behaviour of short piles. Indeed,
the equilibrium of a rigid receiver pile embedded
in a single-layer soil leads to� h

0

kz[áÿ ø(s)] dz�
� h

0

dP � 0 (19a)
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which gives

æ � á

ø(s)
� kz h

kz h� Kb

(19b)

Clearly equation (19b) gives æ as an increasing
function of h. To explain this, recall that the
displacement of a rigid pile does not decrease with
depth; hence, any increase in pile length produces
an additional amount of interaction, while the
restraining action of the spring at the base of the
receiver pile remains constant.

For a very long and compressible pile, the
`source' settlement W11(z) attenuates substantially
at large depths. Only an upper part of the pile
undergoes large settlements (say within the ®rst 20
pile diameters) which would affect the receiver
pile. Below this depth, the remaining part of the
receiver pile is acting as a restrainer to pile settle-
ment. By increasing the length of the pile, the
amount of interaction controlled by these ®rst 20
pile diameters remains constant, while the restrain-
ing lower part becomes stiffer, thereby resulting in
smaller receiver pile response.

For very long piles, the expression (13) devel-
oped here predicts an asymptotic convergence to
æ � 0:50. To ®nd out whether or not this behaviour
is realistic, we examine the results obtained with

more rigorous solutions. Referring to equation
(19b), it can be shown that the interaction factor
between long and rigid piles (say L=d . 50) is
essentially equal to ø(s), since æ! 1 as h!1.
This clearly implies that the interaction factors of
Poulos & Davis (1980), for a pile which is both
long and rigid, are representative of the function
ø(s). In the case of two piles spaced at s � 2d in
homogeneous soil with ís � 0:50, for L=d � 25,
50 and 100, Poulos's `rigid-pile' interaction factors
are 0´64, 0´68 and 0´74 respectively. From the ratio

á (compressible)=á (rigid) � á=ø(s) � æ (20)

we then obtain for Ep=Es � 1000 the values
æ � 0:89, 0´80 and 0´62. For Ep=Es � 100, the
corresponding interaction factors reported by El-
Sharnouby & Novak (1990) are 0´43, 0´39 and
0´41 respectively, leading to æ values of 0´67, 0´57
and 0´55. It is apparent that as the pile length
increases, æ approaches the value of 0´50Ðcon-
®rming the simple theory developed in this paper.

Figures 7 and 8 plot the interaction factors for
compressible piles in homogeneous soil in terms of
s=d. Comparison with corresponding results of
Poulos & Davis (1980) shows reasonably good
agreement for all values of Ep=Es and pile slender-
ness ratios L=d larger than 10. For L=d � 10,
equation (8) tends to underpredict the interaction
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Fig. 7. Interaction factors for piles in homogeneous soil for various pile slenderness ratios L=d: comparison
with Poulos & Davis (1980), Ep=Es � 1000, ís � 0:50
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values, particularly for pile spacings s=d greater
than 5. This is because for such small pile lengths,
the plane-strain based function ø(s) becomes gra-
dually less effective as a predictor of the non-
plane-strain pile interaction. The same deviation is
observed in Randolph & Wroth (1979).

Interaction factors in layered soil
There is an inherent dif®culty in deriving rigor-

ous solutions for pile-to-pile interaction in non-
homogeneous and layered soil. On one hand, ®nite
element based analyses (which can easily treat
layered soils) require substantial computational ef-
fort in three dimensions. On the other hand, there
is a general lack of fundamental solutions for
inhomogeneous and layered domains to support a
(perhaps more suitable) boundary-element formula-
tion. The proposed method provides a reasonably
accurate and simple alternative.

To account for soil layering, equation (12) can
be cast in the following transfer-matrix form:

W11(h)

P11(h)

� �
W21(h)

P21(h)

� �
8>>><>>>:

9>>>=>>>;
i

� [L] [0]

[L1] [L]

� �
i

W11(0)

P11(0)

� �
W21(0)

P21(0)

� �
8>>><>>>:

9>>>=>>>;
(21)

in which [L] and [LI] are 2 by 2 transfer matrices
accounting for single-pile response and pile-to-pile
interaction respectively. The two matrices are given
in Appendix 1.

For n soil layers, applying equation (21) layer
by layer, while imposing the continuity condition
at each interface, leads to

W21

P21

( )
bb

�
FIáá FIáâ

FIâá FIââ

" #
W11(0)

P11(0)

( )
1

�
Fáá Fáâ

Fâá Fââ

" #
W21(0)

P21(0)

( )
1

(22)

in which bb denotes the base of the spring at the
tip of the receiver pile. The ®rst matrix product on
the right-hand side of equation (22) is a known
quantity, corresponding to the `forcing term' pro-
duced by the source pile. Neglecting the interaction
between pile bases, the settlement at the base of
the spring supporting the tip of the receiver pile is
zero (W21bb � 0). Moreover, a unit settlement atop
the source pile (W11(0)1 � 1) requires a force
equal to the solitary-pile stiffness K (P11(0)1 � K).
Then, the resulting settlement of the unloaded
(P21(0)1 � 0) receiver pile is equal to the inter-
action factor á(W21(0)1 � á). Substituting the
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Fig. 8. Interaction factors for piles in homogeneous soil for various Ep=Es ratios: comparison with Poulos
& Davis (1980), L=d � 25, ís � 0:50
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above boundary conditions into equation (22) the
interaction factor á is readily obtained.

For instance, for the case of a two-layer soil,
equation (22) gives the following closed-form ex-
pression for the interaction factor:

á � ø(s)æ(h1ë1, h2ë2, Ù) (24a)

where the function æ � æ(h1ë1, h2ë2, Ù) is given
by

æ �
2h1ë1 � Sh (2h1ë1)�Ù2

1[Sh (2h1ë1)ÿ 2h1ë1]

� 2Ù1Ch (2h1ë1)ÿ 1]

2Sh (2h1ë1)� 2Ù2
1Sh (2h1ë1)� 4Ù1Ch (2h1ë1)

264
� 2Ù1

2Ù1Ch (2h1ë1)� Sh (2h1ë1)(Ù2
1 � 1)

3

2h2ë2 � Sh (2h2ë2)�Ù2[Sh (2h2ë2)ÿ 2h2ë2]

� 2Ù[Ch (2h2ë2)ÿ 1]

2Sh (2h2ë2)� 2Ù22Sh (2h2ë2)� 4ÙCh (2h2ë2)

375
(24b)

with

Ù1 � ë2

ë1

Ù� Th (h2ë2)

1�ÙTh (h2ë2)

and

Ù � Kb

Ep Apë2

(24c)

in which Sh ( ), Ch ( ) and Th ( ) stand for the
hyperbolic functions sinh ( ), cosh ( ) and tanh ( )
respectively. Note that for h1 � 0, equation (24)
reduces to the single-layer equation (13).

For the empirical parameters ÷1 and ÷2 it was
shown earlier that the single-pile stiffness is abso-

lutely insensitive to their exact values. It can now
be shown that the interaction factor a is similarly
insensitive to the `exact' value of the product
÷1÷2 or, equivalently, of the magical radius rm. To
this end, the attenuation function ø(s) is calcul-
ated for two different rm values, rmA and rmB, with
the ratio rmA=rmB varying between 1´0 and 1´50.
The results of this analysis are shown in Table 1.
Apparently, despite the large discrepancy of
50% in rm, the difference in interaction factors
remains within 15%. The largest difference,
14´4%, applies to distant piles (s=d � 10), for
which the interaction factor is already very small.
For more closely spaced piles the average devia-
tion is about 5% which is clearly negligible com-
pared with the many uncertainties in real-life pro-
blems. Therefore, there is no need for a re®ned
method to select `exact' values for ÷1 and ÷2.
Simple engineering judgement based on the recom-
mendation of Randolph & Wroth (1978, 1979)
would suf®ce.

Parametric results for pile-to-pile interaction in
a two-layer soil (equation (24)) are given in Fig. 9
(the soil pro®le is identical to that of Fig. 3). We
notice that an increase of the stiffness of the
bottom layer results in smaller interaction-factor
values. However, for the range of parameters stud-
ied, the embedment ratio h1=L is of secondary
importance. Moreover, for s=d , 5 an increase of
pile length from L=d � 20 to 40 results in a
relatively small decrease in interaction value, while
for s=d . 10 long piles interact much more
strongly than shorter ones. Comparison with corre-
sponding interaction factors calculated (by the
authors) using the boundary-element-type method
developed by Kaynia (1982) shows good agree-
ment, particularly for the long (L=d � 40) piles.

Figure 10 contrasts the proposed method with
results of the ®nite-element-based method of Chow
(1987), who studied two interacting piles in layered

Table 1. Sensitivity of the interaction factor á to the selection of the empirical parameters ÷1 and ÷2

L=d s=d Case A Case B rmA

rmB

øA øB øA

øB

� áA

áB

áA ÿ áB

áA÷1 ÷2 ÷1 ÷2

2 2´5 1 2´5 0´9 1´11 0´66 0´65 1´01 1´35%
2 2´5 1 2´5 0´8 1´25 0´66 0´64 1´03 2´95%

20 2 2´5 0´75 2´5 0´5 1´5 0´63 0´59 1´07 6´83%
4 2´5 0´9 2´5 0´75 1´2 0´48 0´45 1´05 5´2%
6 2´5 0´9 2´5 0´75 1´2 0´38 0´35 1´09 7´91%

10 2´5 0´9 2´5 0´75 1´2 0´25 0´21 1´17 14´4%

2 2´5 1 2´5 0´9 1´11 0´71 0´7 1´01 0´92%
2 2´5 1 2´5 0´8 1´25 0´71 0´69 1´02 1´99%

40 2 2´5 0´75 2´5 0´5 1´5 0´69 0´66 1´05 4´41%
4 2´5 0´9 2´5 0´75 1´2 0´55 0´54 1´03 3´24%
6 2´5 0´9 2´5 0´75 1´2 0´47 0´45 1´05 4´58%

10 2´5 0´9 2´5 0´75 1´2 0´36 0´33 1´08 7´20%
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soil resting on rigid bedrock at a depth equal to
two pile lengths. Four cases with different para-
meters (Fig. 10(a)) are studied. In cases 1 and 2
(Fig. 10(b)), a decreases very fast with pile spacing
s=d. In both cases, the agreement of the two meth-
ods is very good. In contrast, the homogeneous-soil
assumption grossly overestimates a. In cases 3 and
4, the agreement between the two methods is again
very good. Moreover, a very interesting behaviour
is observed: the stiffness of the surface layer
dominates the response, leading to interaction fac-
tors very similar to those in homogeneous soil.

PILE GROUP SETTLEMENT ANALYSIS

For the usual case of a group of m identical
piles on a rigid cap, one can solve for the cap
settlement DG in terms of the resultant force PG:

PG �
Xm

i�1

Pi � [f1gT[A]ÿ1f1g]DG � KG DG

(25)

where [A] is the m 3 m interaction-factor matrix
and {1} is an m 3 1 unit vector.

The pile group ef®ciency (de®ned as the ratio of

the group stiffness to the sum of the stiffnesses of
the individual piles) is shown in Table 2, for the
two-layer pro®le of Fig. 3. The analysis refers to
2 3 2 and 3 3 3 pile groups. The agreement with
the Kaynia (1982) method (results obtained by the
authors) is quite satisfactory, especially for s=d
, 5. Note that by increasing the stiffness of the
bottom layer by a factor of 4, the ef®ciency of the
group increases by about 20% for the 3 3 3 pile
group and about 10% for the 2 3 2 group, com-
pared with the corresponding homogeneous case.

ADDITIONAL INTERNAL FORCES (`DISTRESS') IN

THE PILES

Interaction-factor-based methods usually design
each pile as a single isolated pile carrying only its
share of the cap load, determined from the group
analysis. However, this is not correct because pile-
to-pile interplay not only causes additional settle-
ment at the head of each pile, but also induces
shear tractions along the pile shaft.

The mechanics of this loading is illustrated in
Fig. 11, showing that as the source pile settles, the
displacement ®eld developed drags the receiver pile
down towards its base. This action is analogous to
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Table 2. Settlement ef®ciency factors of 2 3 2 and 3 3 3 pile groups in two-layer soil for various Es1=Es2 ratios:
comparison with results obtained by the authors using the rigorous solution of Kaynia (1982); Ep=Es1 � 1000,
L=d � 20, ís � 0:40, ÷1 � 2:5, ÷2 � 1 for Es1=Es2 � 1, ÷2 � 1
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2 0´39 0´42 0´47 0´36 0´4 0´46
2 3 2 5 0´5 0´52 0´52 0´47 0´54 0´6

10 0´63 0´65 0´74 0´55 0´66 0´73

2 0´22 0´24 0´28 0´21 0´24 0´29
3 3 3 5 0´32 0´34 0´42 0´29 0´35 0´43

10 0´49 0´52 0´67 0´39 0´49 0´59

Fig. 10. Interaction factors for piles in layered soil: (a) parameters for the four cases; (b) comparison
with the numerical solution of Chow (1987), for four different soil pro®les resting on rigid bedrock
located at h � 2L, Ep=Es1 � 1000, L=d � 25, ís � 0:30, ÷1 � 2, ÷2 � 0:5 (cases 1 and 2), 0´85 (case
3) and 1 (case 4)
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the `negative friction' caused by a (downward)
consolidating soil layer. The additional axial force
due to these shear tractions tends to increase with
depth and, combined with the head loading, leads
to a more uniform axial force distribution along
the pile.

Poulos (1968), among others, observed that as
the number of interacting piles increases, the dis-
tribution of shear stress along the shaft changes,
with larger axial stresses developing near the bot-
tom. Ottaviani (1975) found that the load trans-
mitted to the base of piles is much higher in the
cases of 3 3 3 or 5 3 3 pile groups than for a
single pile, a fact observed experimentally by
O'Neil et al. (1982) and by Ghosh (1975).
Randolph & Wroth (1979) proposed an alternative
explanation for this phenomenon: the increasing
proportion of the load transmitted at the base of
the pile group, compared with a single pile, stems
from much greater interaction between pile shafts
than between the pile bases.

No simple method is presently available for
computing this effect, but the analytical approach
of this paper can provide an ef®cient method of
computing `additional' axial forces due to pile-to-
pile interaction, as well as axial forces due to head
loading.

Axial pile forces due to head loading
After the cap settlement DG has been deter-

mined, the distribution of the total load among the
individual piles, Pi, is obtained by inverting equa-
tion (25). Obviously, each pile carrying its own
share Pi would have experienced (if alone) a settle-

ment Wii � Pi=K, smaller than the cap settlement
DG of the group. Their difference, an additional
settlement due to pile-to-pile interaction, can be
written as

fäWig � f1gDG ÿ fWiig (26)

in which the symbol äW denotes the additional
settlement caused by the simultaneous action of all
the other mÿ 1 piles in the group. The axial force
and the displacement pro®le due to head loading
can thus be easily computed along each pile i, by
substituting the pair (Pi, Wii) into the transfer-
matrix formulation of Appendix 1.

Additional pile settlement and distress due to pile
interaction

Apart from the m `source' piles, a complemen-
tary set of m piles, governed by the `receiving'
equations (11) and (12), is conceptually introduced
to compute the additional amount of settlement
and distress. Having evaluated the additional head
settlements äWi (equation (26)) and knowing that
the additional loading atop the receiving piles is
(by de®nition) zero, equation (21) can produce
äWi and äPi at any desired depth z down the pile.
For example, considering the arbitrary pile i of the
group, equation (21) gives

äWi(z)

äPi(z)

( )
� [Li(z)]

äWi

0

( )

�
Xm, j6�i

j�1

[LI(z)ij]
W jj

Pj

( )
(27)

Source pile Receiver pile

W11(0)

s
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distance

W21(0) 5 αW11(0)

Additional
receiver-pile

shear loading

Additional
receiver-pile
axial force

Increased
base reaction

Fig. 11. Schematic illustration of the mechanism causing `addi-
tional' loading to a receiver pile due to the displacement ®eld of
a neighbouring source pile
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in which the terms in the summation stand for the
excitation caused by the source piles. Note that the
symbol z has been used instead of h, to show the
capability of the formulation to predict pile re-
sponse at any depth z. Setting z � h1, the force
and displacement at the bottom of the ®rst layer
are obtained. The procedure can then be repeated
for all n layers (as well as for any other pile in the
group). Finally the total pile response (i.e. the total
settlement and the total distress) is written as the
sum of the two components, `source' and `re-
ceived'. For pile i,

Wi(z)

Pi(z)

( )
(total)

�
Wii(z)

Pi(z)

( )
(source)

�
äWi(z)

äPi(z)

( )
(received)

(28)

As an example, for two piles in a homogeneous
layer, substituting into equation (12) the four inte-
gration constants A11, B11, A21 and B21 (see Ap-
pendix 1) and differentiating with respect to z, one
obtains the additional axial force along the receiver
pile:

P21(z) � P11(0)Ep Apë

K

ø

4
ÿ øK

4Ep Apë

� �
(1� ëz) eëz

�
ÿ ø

4
� øK

4Ep Apë

� �
(1ÿ ëz) eÿëz

ÿ a

2
� øK

4Ep Apë

� �
eëz � a

2
� øK

4Ep Apë

� �
eÿëz

�
(29)

in which á and K are given by equations (13) and
(4a) respectively.

For in®nitely long piles K � Ep Apë and
á � ø=2. Then, equation (29) simpli®es to

P21(z) � P11(0)
ø

2
ëz eÿëz (30)

Equation (30) reaches its maximum at a depth
equal to 1=ë, and the maximum `received' axial
force normalized to the maximum active force is

max P21

P11(0)
� 1

2e
ø(s) � 0:18ø(s) (31)

which is, remarkably, independent of the Winkler
spring constant kz.

Figure 12 depicts the axial force distribution
with depth in the corner and centre piles of a
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3 3 3 pile group embedded in a homogeneous soil.
It is seen that for corner piles, the additional inter-
action force (ADF) is of secondary importance
compared with the direct head loading. On the
contrary, the ADF in the centre piles is a signi®-
cant portion of the total axial load.

Figure 13 illustrates the sensitivity of the ADF
to the speci®c boundary conditions at the pile tip.
It appears that the stiffness of the soil `spring'
below the tip is a controlling factor in the develop-
ment of additional distress. Thus, in `fully ¯oating'
piles with no reaction at their base, the ADF is
insigni®cant (Fig. 13(c)). An exception: for end-
bearing piles (Fig. 13(d)), the undeformable sup-
port at the tip renders pile-to-pile interaction very
small, thus the additional force is only 25% of the
head force.

The signi®cance of the stiffness of the soil
spring is further illustrated in Fig. 13(b); the ADF
was re-evaluated after reducing the spring to 80%
of its initial half-space stiffness. Such a weaker
base spring reduces the additional force at the
tip of the passive pile by about 10%, despite
the fact that it leads to an increased interaction
factor.

Comparison with Ottaviani (1975)
A comparison with 3-D ®nite element (FE)

analysis (Ottaviani, 1975) is shown graphically in
Fig. 14. The plot refers to a 3 3 3 pile group
embedded in a homogeneous soil layer, underlain
by bedrock at a depth 1´5 times the pile length.
The parameters of the problem are pile length
L � 40 m, Ep � 19 600 MPa, Es � 24:5 MPa
(Ep=Es � 800), ís � 0:45, pile spacing s � 4 m
and square cross-section of side a � 1 mÐcompa-
tible with the geometry of the 8-node brick ele-
ments used in the FE analysis. To make the
solutions comparable, an `equivalent' cylindrical
pile is considered with the same cross-sectional
area; the `equivalent' diameter d � 2a=

p
ð �

1:13 m produces a modi®ed s=d ratio equal to
about 3´50, compared to s=a � 4. (The alternative
assumption of `equal perimeters' would yield very
similar results: d � 1:27 m and s=d � 3:14.)

The single-pile stiffness calculated by the pro-
posed method is 407 MN=mÐabout 8% smaller
than Ottaviani's 440 MN=m. On the other hand, the
results for the group stiffness of the two methods
are only approximately comparable, since Ottaviani
considers a deformable concrete pile cap. Never-
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Fig. 13. Axial force distribution along the corner and centre piles of a 3 3 3 pile group in homogeneous
soil for various boundary conditions at the pile tip, Ep=Es � 1000, L=d � 20, ís � 0:40, s=d � 5
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theless, the agreement between the methods is
satisfactory: KG � 1090 MN=m and 1050 MN=m
(çw � 0:30 and 0´27) with the proposed method
and the FE method respectively. The axial load is
plotted against depth in Fig. 14(a) for a single pile
carrying a unit load at its top. The agreement
between the two approaches is very good. In Figs
14(b)±(d) the axial load is plotted against depth
for the corner, edge, and centre piles of the group.
Evidently, the traditional way of calculating axial
forces in grouped piles, considering only the head
loading, underestimates pile distress. Account of
the additional axial force due to pile-to-pile inter-
action clearly improves the comparison with the
FE solution.

Some differences, however, between the two ap-
proaches are worthy of note:

(a) Near the tip, the FE method predicts a
signi®cant reduction in axial load, arising from
a strong local concentration of shear tractions,
particularly on the centre pile. The Winkler
model presented does not exactly follow this

trend, overestimating the tip reaction of the
(grouped) piles.

(b) For the centre pile (Fig. 14(d)), the total axial
load from the present method exhibits a trend
of initially increase with depth. The same
trend was observed in Fig. 13(d) but not in
the FE results. This behaviour stems from
the rigidity of the pile cap (considered in
our simple analysis but not in the FE model):
a very small force acts atop the centre pile.
As a result, the relative importance of the
additional force increases, causing the above
effect.

CONCLUSIONS AND LIMITATIONS

A simple physical method has been presented
for calculating the settlement and distress of single
piles and pile groups in multilayered soil. The
basis of the method is a generalized Winkler-type
model for pile±soil and pile±soil±pile interaction
analysis. Extensive comparisons with available nu-
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Fig. 14. Axial force distribution along (a) solitary pile; (b) corner; (c) edge; (d) centre pile of a 3 3 3 pile group in
single-layer soil resting on rigid bedrock at h � 1:5L: comparison with the ®nite element solution of Ottaviani
(1975), Ep=Es � 800, L � 40 m for the single pile, L � 37 m for the group piles (cap thickness � 3 m), d � 1 m,
s=d � 4, ís � 0:45, ÷1 � 1:5, ÷2 � 1
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merical results con®rmed the (approximate) valid-
ity of the assumptions of the method. Limitations
of the method stem from the simplifying assump-
tions of soil linearity and perfect bonding between
pile and soil (which lead to an upper bound of the
possible pile-to-pile interaction effect), and the
adoption of the superposition `principle' for pile
groups. The latter may not be of suf®cient accu-
racy when applied to very large pile groups, when
the pile is socketed in a very stiff bearing stratum,
and when strongly non-linear soil response pre-
vails.

Nevertheless, the method developed here permits
many key parameters to be evaluated through
closed-form expressions and valuable insight to be
gained on the mechanics of load transfer between
pile and soil and on the interplay between neigh-
bouring piles, in a multilayered soil. It is believed
that the results of the paper complement and
extend the seminal work on the topic by Poulos
(1968, 1989) and by Randolph & Wroth (1978,
1979).

APPENDIX 1. TRANSFER MATRIX FORMULATION
For n soil layers, repeating the equation of motion,

W11(z) � A11 exp [ëz]� B11 exp [ÿëz], for each homoge-
neous layer, while imposing the continuity of forces and
displacements at each interface, we take

W11(h)

P11(h)

� �
bb

� [F]
W11(0)

P11(0)

� �
1

(32a)

where

[F] � [L]b

Yj

i�1

([L]i) (32b)

The transfer matrices [L]b and [L]i are:

[L]i �

cosh (ëi hi) ÿ(Ep Apëi)
ÿ1 sinh (ëi hi)

Ep Apëi sinh (ëi hi) cosh (ëi hi

� �
(33)

[L]b � 1 ÿKÿ1
b

0 1

� �
(34)

Enforcing the boundary conditions W11(h)bb � 0 and
W11(0)1 � 1, the stiffness of a solitary pile is easily
obtained from equation (32a):

K � ÿ F11

F12

(35)

Moreover, for a given force atop the pile, the pile response
at the bottom of any layer j can be calculated as

W11(h)

P11(h)

� �
j

�
Yj

i�1

([L]i)
ÿKÿ1

1

� �
P11(0)1 (36)

For two interacting piles, the transfer matrix equation is
written as (Mylonakis, 1995)

W21(h)

P21(h)

( )
i

� [LI]i

W11(0)

P11(0)

( )
i

� [L]i

W21(0)

P21(0)

( )
i

(37)

in which [L] is given by equation (33) and [LI] by

[LI]i � (kzi
� iùczi

)
ø(s)

2ëi

ÿ hi

Ep Ap

sinh (hiëi)

hiëi cosh (hiëi)� sinh (hiëi)

264
1

(Ep Ap)2ëi

hi cosh (hiëi)ÿ sinh (hiëi)

ëi

� �
ÿ hi

Ep Ap

sinh (hiëi)

3775 (38)

The four integration constants A11, B11, A21 and B21 are
given by

A11 � 1

2
ÿ K

2Ep Apë
B11 � 1

2
� K

2Ep Apë
(39a)

A21 � ø(s)

2
æÿ K

2Ep Apë

� �
B21 � ø(s)

2
æ� K

2Ep Apë

� �
(39b)
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